SYMPHESIS OF [4,4,4] PROPELLANE

J. Altman, D. Becker, D. Ginsburg and H.J.E. Leewenthal Chemistry Department, Israel Institute of Technology

Haifa, Israel

(Received 14 December 1966)

We wish to report the preparation of the title compound 2 by two distinctly different synthetic routes.

One route (J.A., D.G.) is summarized in Scheme I and uses as starting material the disarbexylic acid 1, the usefulness of which has already been demonstrated for the synthesis of propellanes 1:

Scheme I

Arndt-Eistert hemologation of the half-ester 2 (m.p. $72-73^{\circ}$) obtained from 1 via its anhydride led to the diester 2, b.p. $156^{\circ}/0.05$ mm. Dieckmann cyclisation of the latter gave smoothly the expected kete-ester in the form of its stable enclic tautomer $\frac{1}{4}$ (as shewn by n.m.r.), b.p. $100^{\circ}/0.02$ mm, $\frac{1}{100}$ chf $\frac{1}{100}$ 1620, 1660 cm⁻¹. Alkaline hydrolysis followed by acidification led to the dienic ketone 5, m.p. $83-84^{\circ}$, $\frac{1}{100}$ chf $\frac{1}{100}$ cm⁻¹, hydrogenation of which gave $\frac{1}{100}$, $\frac{1}{100}$ repellan-3-one $\frac{1}{100}$ m.p. $\frac{1}{100}$ cm⁻¹.

Scheme II shows the alternative route (D.B., H.J.E.L.):

Scheme II

Addition of methyl vinyl ketone to 2-cyanoethylcyclohexanone, fellowed by acid treatment of the product and esterification, led to the keto-ester 8, b.p. 130°/0.1 mm, $\sqrt{\frac{\text{chf}}{\text{max}}}$ 1660, 1730 cm⁻¹. Desulfurization of the derived ethylenedithioketal 9 gave the ester 10, $\sqrt{\frac{\text{chf}}{\text{max}}}$ 1730 cm⁻¹. The corresponding acid was converted into the diazoketone 11, $\sqrt{\frac{\text{chf}}{\text{max}}}$ 1680, 2110 cm⁻¹. Treatment of the latter with copper sulfate in refluxing cyclohexane afforded in 60% yield the cyclopropane ketone 12, $\sqrt{\frac{\text{chf}}{\text{max}}}$ 1695 cm⁻¹, whose hydrogenation (Pd/C, m-propanol) led specifically in 90% yield (by GLC) to ketone 6, identical in all respects to that obtained by the first route.

Wolff-Kishner reduction of ketone $\underline{6}$ gave the prepellane $\underline{7}$, m.p. 120° , n.m.r. (CDCl₃): single broad peak at $\overline{\iota}$, 8.50 above 60° C.

Analytical results obtained and additional spectroscopic evidence are in full accord with the proposed structures.

Reference

1. J. Altman, E. Babad, J. Itzchaki and D. Ginsburg, Tetrahedron, Suppl. 8, Part 1, 279 (1966).